A In-Situ Soil Moisture Sensing: Optimal Sensor Placement and Field Estimation
نویسندگان
چکیده
We study the problem of optimal sensor placement in the context of soil moisture sensing. We show that the soil moisture data possesses some unique features that can be used together with the commonly used Gaussian assumption to construct more scalable, robust and better performing placement algorithms. Specifically, there exists a coarse-grained monotonic ordering of locations in their soil moisture level over time, both in terms of its first and second moments, a feature much more stable than the soil moisture process itself at these locations. This motivates a clustered sensor placement scheme, where locations are classified into clusters based on the ordering of the mean, with the number of sensors placed in each cluster determined by the ordering of the variances. We show that under idealized conditions the greedy mutual information maximization algorithm applied globally is equivalent to that applied cluster by cluster, but the latter has the advantage of being more scalable. Extensive numerical experiments are performed on a set of 3-dimensional soil moisture data generated by a state-of-the-art soil moisture simulator. Our results show that our clustering approach outperforms applying the same algorithms globally, and is very robust to lack of training and errors in training data.
منابع مشابه
Estimation of soil moisture using optical, thermal and radar Remote Sensing )Case Study: South of Tehran(
Traditional methods of field measurement of soil moisture in addition to the difficulty, the need for manpower and money and fail to take place on a large scale to be able to show moisture. Therefore, remote sensing has become a widespread use .Landsat 8 satellite data and Sentinel-1 radar satellite from Tehran were provided. 72 soil samples were taken at the same time by satellite passing from...
متن کاملDETERMINATION OF SENSOR LOCATIONS FOR MONITORING OF ORCHARDS PARAMETERS USING REMOTE SENSING AND GIS
Optimal management of the farm and increasing production efficiency can be achieved by collecting accurate and appropriate information from the fields. The aim of this study is to determine the location of soil moisture sensors in pistachio orchards. For this purpose, initial information was obtained using satellite image processing. Then, using clustering method the information was clustered t...
متن کاملDevelopment of an Index-based Regression Model for Soil Moisture Estimation Using MODIS Imageries by Considering Soil Texture Effects
Soil moisture content (SMC) is one of the most significant variables in drought assessment and climate change. Near-real time and accurate monitoring of this quantity by means of remote sensing (RS) is a useful strategy at regional scales. So far, various methods for the SMC estimation using a RS data have been developed. The use of spectral information based on a small range of electromagnetic...
متن کاملRecent Advances in Soil Moisture Estimation from Remote Sensing
Monitoring soil moisture dynamics from local to global scales is essential for a wide range of applications. The field of remote sensing of soil moisture has expanded greatly and the first dedicated soil moisture satellite missions (SMOS, SMAP) were launched, and new missions, such as SENTINEL-1 provide long-term perspectives for land surface monitoring. This special issue aims to summarize the...
متن کاملUse of satellite and modeled soil moisture data for predicting event soil loss at plot scale
The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011